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• T2-shuffling is widely used to resolve temporal signal dynamics
in FSE acquisitions via linear latent space and a predefined
regularizer.

• Recent self-supervised learning methods in an unrolled manner
achieve high-fidelity reconstructions by learning a regularizer
from the undersampled data without a standard supervised
training data set.

• In this work, we propose a novel approach that utilizes a self
supervised learning framework to learn a regularizer
constrained on a linear latent space which improves time-
resolved FSE images reconstruction quality. Additionally, in
regimes without groundtruth sensitivity maps, we propose joint
estimation of coil-sensitivity maps using an iterative
reconstruction technique.

• We perform experiments on simulated and retrospective in-
vivo data to evaluate the performance of the proposed zero-
shot learning method for temporal FSE reconstruction.
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• T2-shuffling has demonstrated success in resolving temporal
images from volumetric FSE acquisitions which exploits
temporal correlations with a low-dimensional subspace
model, and utilizes a predefined regularizer.

• To train models without ground truth, Yaman et al. proposed a
self-supervised learning reconstruction method (SSDU),
which trains models in a self-supervised fashion by partitioning
under-sampled kspace data into two disjoint sets, Θ and Λ, and
training a network as a regularizer in the traditional
optimizations with the information from Θ to predict the unseen
data, Λ.
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Linear Latent Space defined by SVD

X and S are commutable

Results for realistic FSE MRI:
R = 16, 12 coils, T=32 echoes, echo spacing of 11.5ms 

Results
Results for simulated FSE MRI:

R = 24, 8 coils, T=80 echoes, echo spacing of 5.56ms 

• In this work we proposed a novel zero-shot self-supervised
reconstruction framework on a linear latent space to
simultaneously learn a regularizer from the highly under-
sampled data itself and exploit temporal correlations to
significantly reduce degrees of freedom in the reconstruction.

• Moreover, a self-supervised sensitivity estimation stage is
proposed which only utilizes the acquired data to further
shorten the total scanning time.
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