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Abstract N Methodology N Results

« T2-shuffling is widely used to resolve temporal signal dynamics
iIn FSE acquisitions via linear latent space and a predefined

Results for realistic FSE MRI:
R =16, 12 coils, T=32 echoes, echo spacing of 11.5ms
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constrained on a linear latent space which improves time-

a2

resolved FSE images reconstruction quality. Additionally, infl Self-supervised reconstruction for FSE with linear Lu
regimes without groundtruth sensitivity maps, we propose joint subspace
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 We perform experiments on simulated and retrospective in- Linear Latent Space defined by SVD
vivo data to evaluate the performance of the proposed zero-
shot learning method for temporal FSE reconstruction.
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X and S are commutable Data Metric Sftx  SSDUx  Subx St Sub  Joint
* T2-shuffling has demonstrated success in resolving temporal S o Simulated | NMSE-I (%) | 9.16 423  7.23 | 19.3 188 11.2
. . L . . ] ] o ] _ SSIM-I 0.945 0.693 0.964 | 0.895 0.910 0.942
images from volumetric FSE acquisitions which exploits Plpellne for jOlnt reconstructions of FSE iImages NMSE-T2 (%) | 24.7 35 5 19.1 | 297 9268 23.5
: i -di : e In-vivo | NMSE-I (%) | 16.2 351  11.9 | 195 17.2 16.2
temporal COrre_IatlonS Wlth_ a low dlmen5|onal subspace and senS|t|V|ty maps SSIM-§ ) 0.942 0.840 0.950 | 0.922 0.924 0.928
model, and utilizes a predefined regularizer. NMSE-T2 (%) | 184 284  16.5 | 255 27.1 21.3
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Conclusion
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* To train models without ground truth, Yaman et al. proposed a
self-supervised learning reconstruction method (SSDU),
which trains models in a self-supervised fashion by partitioning
under-sampled kspace data into two disjoint sets, © and A, and
training a network as a reqgularizer In the traditional

optimizations with the information from © to predict the unseen
data, A.

* |In this work we proposed a novel zero-shot self-supervised
reconstruction framework on a linear latent space to
simultaneously learn a regularizer from the highly under-
sampled data itself and exploit temporal correlations to
significantly reduce degrees of freedom in the reconstruction.
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Kspace to Update Network Parameters

Moreover, a self-supervised sensitivity estimation stage is
proposed which only utilizes the acquired data to further
shorten the total scanning time.
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